Dengue fever epidemic potential as projected by general circulation models of global climate change.
نویسندگان
چکیده
Climate factors influence the transmission of dengue fever, the world's most widespread vector-borne virus. We examined the potential added risk posed by global climate change on dengue transmission using computer-based simulation analysis to link temperature output from three climate general circulation models (GCMs) to a dengue vectorial capacity equation. Our outcome measure, epidemic potential, is the reciprocal of the critical mosquito density threshold of the vectorial capacity equation. An increase in epidemic potential indicates that a smaller number of mosquitoes can maintain a state of endemicity of disease where dengue virus is introduced. Baseline climate data for comparison are from 1931 to 1980. Among the three GCMs, the average projected temperature elevation was 1.16 degrees C, expected by the year 2050. All three GCMs projected a temperature-related increase in potential seasonal transmission in five selected cities, as well as an increase in global epidemic potential, with the largest area change occurring in temperate regions. For regions already at risk, the aggregate epidemic potential across the three scenarios rose on average between 31 and 47% (range, 24-74%). If climate change occurs, as many climatologists believe, this will increase the epidemic potential of dengue-carrying mosquitoes, given viral introduction and susceptible human populations. Our risk assessment suggests that increased incidence may first occur in regions bordering endemic zones in latitude or altitude. Endemic locations may be at higher risk from hemorrhagic dengue if transmission intensity increases.
منابع مشابه
Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)
Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, G...
متن کاملClimate change and the potential global distribution of Aedes aegypti: spatial modelling using geographical information system and CLIMEX
We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosq...
متن کاملبـررسی پتـانسیل اثـرات تغییر اقلیـم بر خشکسـالیهای آینـده کشـور با استفـاده از خروجی مـدلهای گـردش عمـومی جـو
A Study of the Potential Impact of Climate Change on the Future Droughts in Iran by Using the Global Circulation Models as Outputs Gholamreza Roshan Assistant Professor in climatology, Department of Geography, Golestan University, Gorgan, Iran Mohammad Saeed Najafi MSc Student in Climatology, Faculty of Geography, Tehran University, Tehran, Iran. Extended Abstract 1- Introductio...
متن کاملPotential effect of population and climate changes on global distribution of dengue fever: an empirical model.
BACKGROUND Existing theoretical models of the potential effects of climate change on vector-borne diseases do not account for social factors such as population increase, or interactions between climate variables. Our aim was to investigate the potential effects of global climate change on human health, and in particular, on the transmission of vector-borne diseases. METHODS We modelled the re...
متن کاملClimate change scenarios generated by using GCM outputs and statistical downscaling in an arid region
Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down–Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin,which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5,and GFDL21) predictor sets and three special report on emission sce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 106 شماره
صفحات -
تاریخ انتشار 1998